漁船の低速度一定制御装置の開発

白石元*·小幡睦憲**·安立彰***

*機械・金属担当・**電子・情報担当・***(有)光電

Development of Low Speed Controller for Fishing Boat

Hajime SHIRAISHI*•M.OBATA**•A.ADATI***

*Mechanical and Metallurgical Engineering Gr. • * * Electronic • and Informatics Gr. • * * * Koden Corp.

要 旨

漁船の低速度制御を行うため、シミュレーションにより適している制御系を検討した結果、今回の船のモデルは、1次遅れと ムダ時間である程度の近似はできた.ランプ状の入力信号で実データと比較したところ、有効と思われる方法を見出した.

1. 緒言

太刀魚漁は,県内で広く行われている人気のある漁のひ とつであり、この漁法に用いられている一般的な方法はトロ ール漁法である.この方法は、しかけの水深を一定としなけ ればならないため、Fig.1 のように漁船を一定の低速度で運 転する必要がある.また操業は少人数で行われることが多 く、船の操縦および漁を同時に行わなければならないため、 自動化が望まれていた.昨年、漁船の周辺機器を開発して いる企業から、この船低速度自動運転装置の開発を行いた いとの要望があった.企業側でもこの装置を試作し、実験を おこなっていたが、潮や波の影響があり従来の制御系では 自動化を行うことが困難であった.

今回,この装置を開発するため,漁船を実際に運転して 採取したデータをもとに,船の数式モデルを作成し,どのよう な制御系が適しているのかをシミュレーションで検討してみ た.その結果,有効である制御方法や,潮や波などの外乱 に対する影響,応答性をよくするために有効な部分などを把 握することが可能であった.

これらの結果をもとに、実際の漁船に装置を取り付け実験 をおこなったところ、有効な結果を得ることができたので報告 する.

2. 漁船モデル

実際に採取したオープンループでの船の速度ステップ応 答の実験結果から漁船速度制御モデルを作成した. 振動は 見られなかったため,1 次遅れ+ムダ時間で近似を行った. ステップ立ち上がりのモデルとの比較結果を Fig.2 に示す. 整合性は良好であると思われる.

ムダ時間:T_L=3.5sec, 時定数: T=10sec, 速度を合わせるため のゲイン: K₀=360

Fig.2 モデルと実データの比較(ステップ入力)

続いてこのモデルを確かめるため、ランプ状にクラッチ信 号を入力したオープンループで採取したデータとの比較を 行った.なおクラッチには不感帯(最初はつながらない)があ るため、モデルには不感帯を考慮した信号を入れた. Fig.3 にその結果を示す.

3. 各種制御方法検討

3.1 比例制御

作成したモデルを基にシミュレーションを行った結果を示 す.比例制御のブロック図を Fig.4 に示す.調整できる項はk 1である.

Fig.5 比例制御結果

Fig.5 に比例ゲイン20倍,入力0~1のステップ入力結果 を示す.150sec に入力を0に戻している.クラッチ装置は1に 飽和する時間が長く,振動は収まらない.

Fig.6は、クラッチ部の不感帯があるものとないものの結果 を重ね書きしたものである. 振動は小さくなっているが応答 波形に大差は見られない. 比例には遅れが発生しないから と考えられる. また, これらに示した結果より, この対象は比 例のみの制御では, 満足する性能を出すことが難しいと考え られる.

3.2 PI 制御

続いて PI 制御系による結果を示す. これは, Fig.4 の比例 ゲイン k1 を積分項 $\frac{K_{11}}{T_i S}$ ご置き換えたものである. Fig.7 にス テップ応答例を示す. Ti=15sec, 目標値 0.2 入力, K1= 1.0, 設定. 安定させることはできているが, 応答が遅く, 安定 性の調整範囲は狭い. しかし積分が入っているため偏差は0 になっている.

出力船 速度v

3.3 PI制御改造型

PI 制御系を, 改造したものでも試行した. Fig.8 にステップ 応答例をしめす. PI 制御の Fig.7の TiとK1を同じにしたもの である, PI 制御と比較して安定度の優位性が観察される.

Fig.9 に調整を行ったステップ応答例を示す. PI 制御に比 べ応答速度,安定性ともに大きく改善されていることが観察 できる.また不感帯を取ることで応答性のあがることがうかが える.比例, PI, PI 改造型と比較し,安定性,応答性を考慮し た場合, PI 改造型制御系が,今回の船低速制御に最も適し ている制御系であると思われる.

4. 外乱による影響の検討方法および結果

PI 改造型制御系に外乱を入れ,応答を観察した.外乱に は,連続したステップ状のものを発生させ系に入力した.入 力信号には,時間 0sec から0.2のステップ信号を入れ,

100sec 後から Fig.10 のようなステップ外乱を入力した.また, 外乱の影響からの応答性を上げるため,「入力信号と外乱信 号のフィードフォワード項を追加したもの」を検討した. Fig.11 にそのブロック線図の一部を示す.

この系の狙いは、外乱信号を積分項を通さずに直接エンジンに入力することで、外乱にすばやく、反応させることである. また外乱信号は、実際の場合は測定することができないため、コントローラ内部にモデルを持たせ、モデル結果 y1と実速度データ y との差によって外乱を演算させることで使用可能となる.

5. 結言

(1) 制御対象モデルについて

今回の船のモデルは、1次遅れとムダ時間である程度の 近似はできる.ランプ状の入力信号で実データと比較したと ころ、良好な結果が得られた.

(2) 各種制御方法について

*比例制御:実験データを取った漁船では、比例制御系のみ で自動制御を行うことは難しい.安定性の確保できるゲイ ンでは、定常偏差が大きくなりすぎる.また、船のクラッチ に対するエンジン出力を上げてもスクリューを逆転しても 比例ゲインを大きくとることはできない.現在までの企業で の実験は比例制御であった.

*PI制御:PI制御系で安定させることはできるが,安定性を確 保しつつ応答を速くすることは難しい.

*PI 改造型制御系:安定性もよく応答性も速くすることができる.

(3) PI 改造型制御系への外乱入力

ステップ状外乱が入った後の応答を速くする目的で,外乱 信号をフィードフォワード的に系に入力したが,効果はみら れなかった.ステップ状外乱に対して,完全な対応をとるに は,ムダ時間をなくすこと,外乱を予測することであるが,これ は現実的には難しい.

(4) クラッチ部の不感帯部について

クラッチ装置の不感帯部をなくすことで、応答を速くすることはできる、しかし制御性にはあまり影響は見られなかった.